Diagnostic Modelling of an Expansion Tube Operating Condition for a Hypersonic Free Shear Layer Experiment
نویسندگان
چکیده
Computational simulations of the AIR-1 test condition in the University of Illinois’ Hypervelocity Expansion Tube were conducted to verify facility operation and to obtain free stream properties that are otherwise difficult to measure. Two types of simulation were undertaken. The first was a one-dimensional simulation of the entire facility and the second was a hybrid simulation, combining a one-dimensional simulation of the shock tube section with a two-dimensional simulation of the acceleration tube. The one-dimensional simulation matched the experimental data well, however the two-dimensional simulation did not initially match the experimental measurements of shock speed and test gas pitot pressure. Further investigation showed the shock speed discrepancy was consistent with air contamination into the acceleration tube and subsequent two-dimensional simulations assuming 10% air contamination showed reasonable agreement with experimental data. Using data taken from the two-dimensional simulation of the expansion tube as a transient inflow condition, modelling was undertaken of a free shear layer experiment being conducted in the facility. Results from equilibrium, finite rate, and perfect gas models were compared. The finite rate simulation provides the best agreement with experimental Schlieren images, with the simulation capturing the major flow structures seen in experiments.
منابع مشابه
Analytic Solution for Hypersonic Flow Past a Slender Elliptic Cone Using Second-Order Perturbation Approximations
An approximate analytical solution is obtained for hypersonic flow past a slender elliptic cone using second-order perturbation techniques in spherical coordinate systems. The analysis is based on perturbations of hypersonic flow past a circular cone aligned with the free stream, the perturbations stemming from the small cross-section eccentricity. By means of hypersonic approximations for the ...
متن کاملNumerical Simulation of Shock-Wave/Boundary/Layer Interactions in a Hypersonic Compression Corner Flow
Numerical results are presented for the shock-boundary layer interactions in a hypersonic flow over a sharp leading edge compression corner. In this study, a second- order Godunov type scheme based on solving a Generalized Riemann Problem (GRP) at each cell interface is used to solve thin shear layer approximation of laminar Navier-Stokes (N-S) equations. The calculated flow-field shows general...
متن کاملPunch plastic deformation pipe cladding (PPDPC) as a novel tube cladding method
This study presents a new mechanical tube cladding process named punch plastic deformation pipe cladding (PPDPC) based on local deformation by pressing a punch into the inner layer of the bimetal tube. To investigate the capability of the process, stainless steel tube (as the inner layer) is bonded to a carbon steel pipe (as the outer layer) to fabricate a bimetal pipe. Shear punch tests were u...
متن کاملApplication of non-isotropic resolution PIV in supersonic and hypersonic flows
The non-isotropic image interrogation technique is applied to study the compressible supersonic and hypersonic flow regimes. Supersonic flow experiments are performed in a blow-down windtunnel where the wake turbulence downstream of a wedge-plate model configuration is studied in the transonic M=1.35 regime. The hypersonic experiments are conducted in a short duration facility at Mach 6 and the...
متن کاملModel Uncertainties in a Sharp Leading-Edge Hypersonic Boundary Layer
The effects of uncertainties in the gas-surface interaction and intermolecular interaction models on the hypersonic boundary layer development are investigated using the non-intrusive generalized polynomial chaos method. In particular, uncertainties in the surface shear stress, normal stress, heat flux, flowfield temperature and density resulting from uncertain viscosity exponent, surface tempe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009